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Aiming at the longitudinal motion model of the air-breathing hypersonic vehicles (AHVs) with parameter uncertainties, a new
prescribed performance-based active disturbance rejection control (PP-ADRC) method was proposed. First, the AHV model
was divided into a velocity subsystem and altitude system. To guarantee the reliability of the control law, the design process was
based on the nonaffine form of the AHV model. Unlike the traditional prescribed performance control (PPC), which requires
accurate initial tracking errors, by designing a new performance function that does not depend on the initial tracking error and
can ensure the small overshoot convergence of the tracking error, the error convergence process can meet the desired dynamic
and steady-state performance. Moreover, the designed controller combined with an active disturbance rejection control (ADRC)
and extended state observer (ESO) further enhanced the disturbance rejection capability and robustness of the method. To avoid
the differential expansion problem and effectively filter out the effects of input noise in the differential signals, a new tracking
differentiator was proposed. Finally, the effectiveness of the proposed method was verified by comparative simulations.

1. Introduction

Air-breathing hypersonic vehicles (AHVs) are a new type of
aircraft, which fly at speeds greater than Mach 5 at near space
altitudes. AHVs exhibit fast flying speeds, strong penetration
abilities, and long combat distances. It is difficult to detect
and intercept AHVs. AHVs have strong survivability, and
they have outstanding advantages in strategy, tactics, and
cost-effectiveness compared to traditional aerospace vehicles
[1–3]. AHVs have become a priority development direction
for all of the aerospace powers competing for air and space
rights. However, AHVs are multivariable and strongly
coupled nonlinear systems. AHVs have large flight airspaces,
and the flight environments are complex and variable, which
results in large and fast time-varying characteristics and alti-
tude uncertainty of the AHV model. Thus, the design of the
AHV control system involves unprecedented difficulties
and challenges [4, 5].

Most of the previous research on the modelling and con-
trol of AHVs has mainly focused on the AHV’s longitudinal
motion plane. On the one hand, the longitudinal motion

model is complex enough to require flight control. On the
other hand, due to the scramjet engine’s extreme sensitivity
to the flight attitude, AHVs should avoid horizontal manoeu-
vres during actual flight [6]. In a previous study [7], a robust
L∞ gain control method was designed for AHVs, which used
the Takagi-Sugeno (T-S) fuzzy system to approximate the
unknown state of the model. To guarantee the robustness
of the control scheme, a new fuzzy disturbance observer
was designed to estimate the disturbance. A similar longitu-
dinal elastic model of the AHV was expressed as a T-S fuzzy
system [8], and a H2/H∞ tracking control law was designed
to achieve the robust tracking of the speed and altitude refer-
ence inputs. To improve the tracking effect, a nonlinear
adaptive back-stepping controller was designed for the
AHV based on the back-stepping design [9]. Based on the
traditional back-stepping control method, a nonsingular fast
terminal sliding model control was applied to control the
pitch angle and pitch rate, which optimized the control struc-
ture of the back-stepping method and achieved finite time
convergence of the system [10]. In one study, an integral slid-
ing model control method was proposed [11]. When there
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are model uncertainties and external disturbances, the con-
trol scheme can still guarantee finite time convergence of
the velocity and altitude tracking errors. Aiming at the atti-
tude control problem of AHVs, a robust fuzzy control
method based on a nonlinear switching system was proposed
[12], which used a fuzzy system to approximate the unknown
function of the model and guaranteed the robustness of the
control scheme. Neural control methods for scenarios where
the control input of the AHV contained a dead zone [13] and
the actuator of the AHV contained failures [14] were studied.
Two new neural back-stepping control methods were put
forward [15, 16]. The altitude subsystem was rewritten in
strict and pure feedback forms. Based on the improved
back-stepping strategy, the control scheme was designed,
and a minimal learning parameter (MLP) algorithm was
applied to reduce the online learning parameters. The track-
ing simulation results of the velocity and altitude reference
input showed that the proposed method exhibited better
robustness and control effects. To solve the control problem
of a strongly nonlinear model, such as an AHV, in addition
to the fuzzy system or neural network used in the above lit-
erature to estimate the uncertainty of the model, active dis-
turbance rejection control (ADRC) can also be considered.
The ADRC term was first used in [17] where Professor
J.Q. Han’s unique ideas were first systematically introduced
into the English literature. In recent years, many scholars
have conducted meaningful work on ADRC. In a previous
study [18], ADRCwas offered as the basis of a paradigm shift,
providing the framework, the objectives, and constraints for
future control theory development. For a class of multiple-
input multiple-output (MIMO) lower-triangular systems
which have uncertain dynamics and disturbance, an ADRC
method was designed to solve the control problem [19]. An
overview of the concept, principles, and practice of the
ADRC was presented in [20]. The key idea of ADRC is to
use an extended state observer (ESO) to estimate the total
disturbance, which is then compensated in the feedback loop.
For a class of nonlinear systems with large uncertainties that
come from both internal unknown dynamics and external
stochastic disturbance, a novel ESO was designed to estimate
both state and total disturbance which included the internal
uncertain nonlinear part and the external uncertain sto-
chastic disturbance [21]. To improve the performance of
ADRC, a fal-based, single-parameter-tuning ESO was pro-
posed, and the convergence of the fal-based ESO and the
output tracking were established [22]. To improve the per-
formance of the tracking differentiator (TD), an ADRC
method based on a radial basis function neural network
(RBFNN) was proposed [23], which enhanced the robust-
ness and disturbance rejection ability of the method. To
assist in the tuning of the parameters of the linear ADRC
controller, a tuning rule was proposed to minimize the load
disturbance attenuation performance [24]. Based on the
existing swarm intelligence algorithms, a parameter tuning
optimization design of ADRC was achieved [25]. An in-
depth study on the scheme design of an ADRC was con-
ducted and applied to a three-degree-of-freedom pneumatic
motion system subject to actuator saturation [26], which
achieve good control.

Although the methods in the above literature achieved
certain control effects, the research focus was on the robust-
ness and steady-state performance of the AHV closed-loop
control system, neglecting the dynamic performance of
the control system. However, AHV’s super-manoeuvrable,
large-envelope, and hypersonic flight demands better dynamic
performance of the control system than any other existing
aircraft. In most cases, a small control delay will cause signif-
icant errors in the hypersonic flight. Therefore, to guarantee
the robustness and steady-state accuracy of the control sys-
tem, more attention should be paid to the dynamic perfor-
mance and real-time performance of the control system. To
consider both the steady-state and dynamic performances,
the concept of prescribed performance control was proposed
by Charalampos and George [27]. The prescribed perfor-
mance ensured that the tracking error converged to a pre-
scribed arbitrary small area. Meanwhile, the convergence
rate and overshoot met the prescribed conditions. Based on
the prescribed performance control, a longitudinal inner-
loop controller of the hypersonic vehicle was designed [28].
However, the vehicle was considered to be a pure rigid body
and the elastic problem was not considered, which resulted in
the limitations of the proposed method. Aiming at the elastic
body of the AHV model, a prescribed performance fuzzy
back-stepping control method and performance neural
back-stepping control method were proposed [29, 30], which
guaranteed the steady-state performance and dynamic per-
formance of the control system. However, the above two
methods considered the AHV model to be an affine model,
which made the reliability of the design method not guaran-
teed. An AHV adaptive neural control method was designed
based on the prescribed performance function, which
avoided the cumbersome virtual control law design process
[31]. Meanwhile, the accuracy and rapidity of the control sys-
tem were achieved. However, the proposed method relied too
much on the initial value of the tracking error, which resulted
in the poor practicality and operability.

In view of the deficiencies of the research in the above
studies, an elastic hypersonic vehicle was taken as the
research object. In this study, a new prescribed performance
function was designed based on the hyperbolic cosine func-
tion, which avoided the singular control problem caused by
the improper initial value setting. Thus, the steady-state per-
formance and dynamic performance of the control system
could be guaranteed. Meanwhile, active disturbance rejection
control was introduced and an ESO was designed for each
unknown nonaffine function in the AHV system [32], which
further guaranteed the control accuracy and the robustness
of the method. To address the complexity of the derivative
of the virtual control law, a track differentiator was applied
to estimate the related signals and signal derivatives. The
effectiveness and superiority of the proposed method was
verified through the simulation and comparison.

2. AHV Model and Preliminaries

2.1. Model Description. To better describe the longitudinal
motion of the AHV, American scholar Parker used the
research conclusions of Bolender and Doman [33, 34]
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combined with Hooke’s law and the Lagrange equation to
establish the following control-oriented AHV longitudinal
motion parameter fitting model:

_V =
T cos θ − γð Þ −D

m
− g sin γ, ð1Þ

_h =V sin γ, ð2Þ

_γ = L + T sin θ − γð Þ
mV

−
g
V

cos γ, ð3Þ

_θ =Q, ð4Þ

_Q =
M + ~ψ1€η1 + ~ψ2€η2

Iyy
, ð5Þ

k1€η1 = −2ζ1ω1 _η1 − ω2
1η1 +N1 − ~ψ1

M
Iyy

−
~ψ1~ψ2€η2
Iyy

, ð6Þ

k2€η2 = −2ζ2ω2 _η2 − ω2
2η2 +N2 − ~ψ2

M
Iyy

−
~ψ2~ψ1€η1
Iyy

: ð7Þ

Equations (1)–(5) describe the rigid body part of the
AHV. The five rigid states are the velocity V , altitude h,
flight-path angle γ, pitch angle θ, and the pitch rate Q. m is
the mass of the AHV, g is the gravitational acceleration con-
stant, and Iyy is the moment of inertia of the AHV. The force
condition of the AHV is shown in Figure 1. The parameter
fitting form of the thrust T , drag D, lift L, pitching moment
M, and generalized force Niði = 1, 2Þ can be expressed as fol-
lows [35]:

T ≈ Cα3

T α3 + Cα2

T α
2 + Cα

Tα + C0
T ,

D ≈ �qS Cα2

D α2 + Cα
Dα + Cδ2e

D δ
2
e + Cδe

D δe + C0
D

� �
,

L ≈ �qS Cα
Lα + Cδe

L δe + C0
L

� �
,

M ≈ zTT + �qS�c Cα2

M,αα
2 + Cα

M,αα + C0
M,α + ceδe

h i
,

N1 ≈Nα2

1 α
2 +Nα

1α +N0
1,

N2 ≈Nα2

2 α
2 +Nα

2α +Nδe
2 δe +N0

2,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð8Þ

with

Cα3

T = β1 h, �qð ÞΦ + β2 h, �qð Þ,
Cα2

T = β3 h, �qð ÞΦ + β4 h, �qð Þ,
Cα
T = β5 h, �qð ÞΦ + β6 h, �qð Þ,

C0
T = β7 h, �qð ÞΦ + β8 h, �qð Þ,

�q =
�ρV2

2
, �ρ = �ρ0 exp

h0 − h
hs

� �
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

where the attack angle α = θ − γ, the fuel equivalence ratio Φ,
and the elevator angular deflection δe are control inputs, S
and �c are the reference area and aerodynamic chord of the
AHV, respectively, zT is the thrust moment arm, ce is the
coefficient of δe in M, h0 and ρ0 are the nominal altitude
and corresponding air density, respectively, 1/hs is the air
density decay rate, �q and �ρ are dynamic pressure and air den-
sity at h, respectively, C•i

∗ ð· = α, δe;∗ = T ,DÞ is the ith order
coefficient of · in ∗, C0

∗ð∗ = T ,D, LÞ is the constant coefficient
in ∗, C∗

Lð∗ = α, δeÞ is the contribution of the coefficient of ∗
in L, Cαi

M,α is the ith order coefficient of α in M, C0
M,α is the

constant coefficient in M, Nαi
j is the jth order contribution

of α to Nj, N
0
i is the constant term in Ni, N

δe
2 is the contribu-

tion of δe to N2, and βiðh, �qÞ is the ith thrust fit parameter.
Equations (6) and (7) describe the elastic body part of the

AHV. The elastic states are η1 and η2. ζi and ωiði = 1, 2Þ are
the damping ratio and vibrational frequency of the AHV
elastic state. ki and ~ψiði = 1, 2Þ can be expressed as follows:

k1 = 1 +
~ψ1
Iyy

, k2 = 1 +
~ψ2
Iyy

,

~ψ1 =
ð0
−Lf

m̂f ξϕf ξð Þdξ,

~ψ2 =
ðLa
0
m̂aξϕa ξð Þdξ,

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

where Lf and La are the front and rear beam length of the
AHV, respectively, m̂f and m̂a are the mass distributions
of the front and the rear beams, respectively, and ϕf ð·Þ and
ϕað·Þ are the vibration mode functions of the front and
rear beam, respectively. The specific values of the model

V

�훾

�훼

�휃=�훼+�훾

�훿eT
M

G

L

D
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Figure 1: AHV force diagram.
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parameters and aerodynamic parameters of the abovemen-
tioned AHV are shown in [35].

2.2. Prescribed Performance. The AHV prescribed perfor-
mance control method based on the nonaffine model is stud-
ied in this paper. To make the tracking error convergence
processes meet the desired dynamic and steady-state perfor-
mance, the following new performance function pðtÞ is
designed to limit the tracking error.

p tð Þ = coth kpt + χp

� �
− 1 + p∞, ð11Þ

where kp, χp, p∞ ∈ R+ are parameters to be designed.
pðtÞ has following properties:

(1) pðtÞ is a positive monotonically decreasing function

(2) pð0Þ = coth ðχpÞ − 1 + p∞ = e2χp + 1/e2χp − 1 − 1 + p∞
> p∞

(3) lim
χp→0

pð0Þ→ +∞

(4) lim
t→+∞

pðtÞ = p∞

The prescribed performance is defined as follows:

−p tð Þ < e tð Þ < p tð Þ, ð12Þ

where eðtÞ is the tracking error. By choosing a small
enough χp, it is guaranteed that pðtÞ→ +∞ and −pðtÞ→
−∞ based on the property (3). Therefore, for any unknown
but bounded eð0Þ, the following inequality always holds:

−p 0ð Þ < e 0ð Þ < p 0ð Þ: ð13Þ

The prescribed performance defined by Equation (12)
is shown in Figure 2. p∞ is the upper bound of the eðtÞ
steady-state value, which means −p∞ < eð∞Þ < p∞. There-
fore, the desired steady-state accuracy of eðtÞ can be guaran-
teed by choosing an appropriate p∞. pð0Þ is the maximum
overshoot allowed by eðtÞ. kp directly influences the decreas-
ing rate of pðtÞ. With the increase in kp, pðtÞ decreases
more rapidly.

Remark 1. For any arbitrary bounded eð0Þ whether it is
known or not, as long as the χp is chosen to be small enough,
eð0Þmust be included in the prescribed area defined by Equa-
tion (12), which avoids the singular control problem caused
by the improper initial value setting of the traditional perfor-
mance function [36].

Remark 2.When the χp is chosen to be small, the value of
pð0Þ will be very large, which can lead to too large of an
overshoot of eðtÞ. However, because the response speed of e
ðtÞ is limited, the desired dynamic performance, including
the overshoot and setting time, can be guaranteed by choos-
ing a larger kp. This suggests that if the tracking error eðtÞ
satisfies Equation (12), the overshoot and the adjusting
time can be constrained within a certain range, as shown
in Figure 2. Thus, by designing the controller which can
make the tracking error meet the constraint of Equation
(12), the desired dynamic performance of the control system
can be guaranteed.

The transformed error εðtÞ is defined as follows:

ε tð Þ = ln
λ tð Þ + 1
1 − λ tð Þ
� �

, ð14Þ

where λðtÞ = eðtÞ/pðtÞ. The following theorem can be
obtained.

Theorem 1. If εðtÞ is bounded, then −pðtÞ < eðtÞ < pðtÞ.

Proof. Because εðtÞ is bounded, there must be a bounded
constant εM ∈ R+ that makes jεðtÞj ≤ εM . Furthermore, the
inverse transformation of Equation (14) is as follows:

eε tð Þ =
λ tð Þ + 1
1 − λ tð Þ : ð15Þ

Based on Equation (15),

−1 <
e−εM − 1
1 + e−εM

≤ λ tð Þ ≤ eεM − 1
1 + eεM

< 1: ð16Þ

Substituting λðtÞ = eðtÞ/pðtÞ into Equation (16) yields

−p tð Þ < e tð Þ < p tð Þ: ð17Þ

Therefore, Theorem 1 is established.

Remark 3. The control law below will be designed based on
the transformed error εðtÞ. Theorem 1 shows that as long
as εðtÞ is bounded, eðtÞ can be limited to the prescribed area
defined by Equation (12). By choosing appropriate design
parameters for pðtÞ, the desired dynamic performance and
steady-state accuracy of eðtÞ can be guaranteed.

2.3. Model Conversion and Control Objective. On the one
hand, since the thrust T is directly influenced by the fuel
equivalence ratio Φ, the velocity V of the AHV is mainly

P
∞

p(0)

e(0)

−P
∞

–p(0)
–p(�푡)

e(�푡)
p(�푡)

0

�푡/�푠

Figure 2: Prescribed performance defined by Equation (12).
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controlled by Φ. On the other hand, since the elevator angu-
lar deflection δe directly influences the pitch rate Q, it further
changes the pitch rate θ and the flight-path angle and finally
influences the change of the altitude. The altitude change
of the AHV is mainly controlled by the elevator angular
deflection δe [37, 38]. Therefore, most previous studies on
AHV control issues first divide the AHV model into a veloc-
ity subsystem controlled by Φ (Equation (1)) and an altitude
subsystem controlled by δe (Equations (2)–(5)) and then
derived control laws [39, 40].

Based on the previous studies [37, 38], the velocity sub-
system of the AHV was considered to be a nonaffine form
with the control input:

_V = f V V ,Φð Þ,
yV = V ,

(
ð18Þ

where yV is the output of the system, and f VðV ,ΦÞ is a
completely unknown continuous differentiable function. For
the velocity subsystem, the control goal is to design an appro-
priate control law Φ based on the nonaffine model (Equation
(18)). Thus, the robustness tracking of the velocity V to the
reference input V ref can be achieved, and the velocity track-
ing error can be limited to the prescribed area.

Similarly, the altitude subsystem of the AHV can be
expressed as the following nonaffine pure feedback system:

_h =V sin γ,

_γ = f γ γ, θð Þ,
_θ =Q,
_Q = f Q x, δeð Þ,
yh = h,

8>>>>>>>>><
>>>>>>>>>:

ð19Þ

where yh is the output of the system, and x = ½γ, θ,Q�T,
f γðγ, θÞ, and f Qðx, δeÞ are completely unknown continuous
differentiable function. For the altitude subsystem, the con-
trol goal is to design an appropriate control law δe. Thus,
the stable tracking of the altitude h to the reference input
href can be achieved and the altitude tracking error can be
limited to the prescribed area. Also, the desired dynamic per-
formance and steady-state accuracy can be guaranteed.

Remark 4. Most previous studies on AHV control issues
designed the control law based on the affine model. However,
the AHV motion model is nonaffine. If the nonaffine model
of the AHV is forcibly simplified to an affine model, the loss
of certain key dynamics is inevitably. The designed control
law has the risk of partial or complete failure. The proposed
control law in this paper will be designed based on the non-
affine model (Equations (18) and (19)), which guarantees
the reliability of the control law.

2.4. Extend States Observer and Tracking Differentiator. To
design the active disturbance rejection control law, the
extended state observer is applied to estimate the uncertainty

of the AHV model and the external disturbance. The follow-
ing system is considered:

_z =H tð Þ + BU , ð20Þ

where HðtÞ is the unknown term, and U is the input of the
subsystem. The state z of the system is measurable. There-
fore, the state of the system can be expanded to the following
system:

_z = z0 + BU ,

_z0 =G tð Þ,

(
ð21Þ

where GðtÞ is the unknown derivative of the unknown term
HðtÞ. Therefore, the ESO can be established as follows:

E = Z1 − z,
_Z1 = Z2 − β01 f c1 Eð Þ + BU ,
_Z2 = −β02 f c2 Eð Þ,

8>><
>>: ð22Þ

where E is the estimation error of the ESO, Z1 and Z2 are the
outputs of the ESO, β01 > 0 and β02 > 0 are the observer
gains, and parametric function f cið·Þði = 1, 2Þ is an appropri-
ately constructed nonlinear function, which satisfies ef ciðeÞ
> 0, ∀e ≠ 0, and f cið0Þ = 0. The parametric function f cið·Þ in
this paper is chosen to have the following form:

f c1 Eð Þ = E,

f c2 Eð Þ = Ej jα1 sgn Eð Þ,

(
ð23Þ

where 0 ≤ α1 ≤ 1.

Theorem 2. Aiming at the system specified by Equation (20),
if the ESO (Equation (22)) is applied, there will be gain param-
eters β01, β02 > 0 and 0 ≤ α1 ≤ 1, which makes the output of the
ESO Z1 and Z2 converge to the actual state z and a compact set
of the unknown term HðtÞ, respectively. Bounded constants
σ1, σ2 > 0 exist, which make:

Z1 − zj j ≤ σ1,

Z2 −H tð Þj j ≤ σ2:

(
ð24Þ

Proof. The proof process is shown in the appendix.

Some signals in the control law design process are often
difficult to obtain by the model construction. Many scholars
have proposed using the tracking differentiator to estimate
the signal [41]. The design principle is to achieve the highest
precision extraction of the differential signal and to ensure
certain robustness to the input noise of the signal. A new
TD is proposed in this paper to estimate the differential sig-
nal. The specific form of the new TD is as follows:
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_υ1 = υ2,

_υ2 = υ3,

⋮

_υn = Rn ν − υ1 −
υ2
R

−
υ3
R2 −⋯−

υn
Rn−1

� �
,

8>>>>>><
>>>>>>:

ð25Þ

where ν is the input signal to be estimated, υ1 is the estimated
value of ν, and υiði = 2, 3,⋯, nÞ are the estimated values of
the i − 1th derivative of ν, respectively; R is the parameter
to be designed.

Theorem 3. If the new TD (Equation (25)) is applied to esti-
mate the input signal ν and the derivatives, there exists an R
> 0 that makes υiði = 1, 2,⋯, nÞ converge to a compact set of
νðnÞðn = 0, 1,⋯, n − 1Þ, respectively. Bounded constants �λi >
0ði = 1, 2,⋯, nÞ exist, which make:

υ1 − νj j ≤ �λ1,

υ2 − _νj j ≤ �λ2,

⋮

υn − ν n−1ð Þ
��� ��� ≤ �λn:

8>>>>>><
>>>>>>:

ð26Þ

Proof. The certification process is detailed elsewhere [42].

Remark 5. Compared with traditional tracking differentiators
[41], the new TD proposed in this paper has two advantages.
First, the structure is simple and can estimate the arbitrary
derivative of the input signal. Second, the new TD has only
one parameter R to be designed, and the parameter adjust-
ment process is easier.

3. Controller Design

3.1. Velocity Controller Design. The velocity subsystem
(Equation (18)) is assumed to be affected by external distur-
bances. According to the idea of self-interference, it can be
expressed as follows:

_V = f V V ,Φð Þ + dV tð Þ − lVΦ + lVΦ

= FV V ,Φð Þ + lVΦ,

yV =V ,

8>><
>>: ð27Þ

where dVðtÞ is the external disturbance, FVðV ,ΦÞ = f VðV ,
ΦÞ + dVðtÞ − lVΦ is the unknown term, and lV > 0 is the
parameter to be designed.

The velocity tracking error can be defined as follows:

~V =V −V ref : ð28Þ

The first derivative of Equation (28) with respect to time
is obtained, and Equation (27) is substituted into the result,
yielding the following:

_~V = FV V ,Φð Þ − _V ref + lVΦ: ð29Þ

According to Equation (14), the velocity transformed
error can be defined as follows:

εV tð Þ = ln
~V/pV tð Þ + 1
1 − ~V/pV tð Þ

 !
, ð30Þ

where pVðtÞ = coth ðkpVt + χpVÞ − 1 + pV∞, and kpV , χpV ,
pV∞ ∈ R+ are parameters to be designed.

The first derivative of Equation (30) with respect to time
is obtained, and Equation (29) is substituted into the result,
yielding the following:

_εV tð Þ = rV
_~V −

_pV tð Þ
pV tð Þ

~V
� �

= rV FV V ,Φð Þ − _V ref + lVΦ −
_pV tð Þ
pV tð Þ

~V
� �

,
ð31Þ

where

rV =
1

pV tð Þ
1

~V/pV tð Þ + 1
−

1
~V/pV tð Þ − 1

 !
> 0,

_pV tð Þ = kpV 1 − coth2 kpV t + χpV

� �� �
:

ð32Þ

To estimate the unknown term FVðV ,ΦÞ, the following
ESO is designed for Equation (31):

EV = ZV1 − εV ,

_ZV1 = ZV2 − βV1EV + rV lVΦ − _V ref −
_pV tð Þ
pV tð Þ

~V
� �

,

_ZV2 = −βV2 EVj jαV sgn EVð Þ,

8>>>><
>>>>:

ð33Þ

where βV1, βV2 > 0, 0 ≤ αV ≤ 1 is the parameter to be
designed, ZV1 is the estimated value of εV , and ZV2/rV is
the estimated value of the unknown term FVðV ,ΦÞ.

The active disturbance rejection control law Φ can be
designed as follows:

Φ = −
1
lV

ZV2
rV

+ kVεV − _V ref −
_pV tð Þ
pV tð Þ

~V
� �

, ð34Þ

where kV > 0 is the parameter to be designed.

Theorem 4. Considering the velocity subsystem (Equation
(18)), if the active disturbance rejection control law (Equation
(33)) and the ESO (Equation (32)) are applied, the closed-loop
control system is semiglobally uniformly asymptotically stable,
and the speed tracking error is limited to the prescribed area.
The following inequality holds −pVðtÞ < ~V < pVðtÞ.
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Proof. Substituting Equation (33) into Equation (31) yields:

_εV = rV FV V ,Φð Þ − ZV2
rV

− kVεV

� �
: ð35Þ

The following Lyapunov function was selected:

WV =
1
2
ε2V : ð36Þ

The first derivative of WV with respect to time is
obtained, and Equation (34) is substituted into the result,
yielding the following:

_WV = εVrV FV V ,Φð Þ − ZV2
rV

− kVεV

� �

= rV εV FV V ,Φð Þ − ZV2
rV

� �
− kVε

2
V

� �
:

ð37Þ

Combined with Equation (24), a constant ϖV exists such
that:

FV V ,Φð Þ − ZV2
rV

����
���� ≤ ϖV : ð38Þ

Considering that rV > 0, Equation (37) is substituted into
Equation (36), yielding:

_WV ≤ rV −kVε
2
V + εVj jϖV

� �
≤ rV − kV −

1
2

� �
ε2V +

1
2
ϖ2
V

� �
:

ð39Þ

With kV > 1/2, the following compact set is defined:

ΩεV
= εV εVj j ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/2ð Þϖ2

V

kV − 1/2

s������
8<
:

9=
;: ð40Þ

Combining Equations (38) and (39), if εV ∉ΩεV
, then

_WV < 0. Therefore, the closed-loop control system is semi-
globally uniformly asymptotically stable, and the velocity
transformed error will finally converge to the compact set
ΩεV

. If the estimated accuracy of the ESO is high enough
(ϖV is small enough) and the kV is sufficiently large, the radius
of the compact ΩεV

and the εV can be sufficiently small.
The above proves that the transformed error is bounded.

According to Theorem 1, −pVðtÞ < ~V < pVðtÞ. The velocity
transformed error is limited to the prescribed area.

3.2. Altitude Controller Design. Considering the altitude sub-
system (Equation (19)), the altitude tracking error can be
defined as ~h = h − href . The altitude transformed error can
be defined as follows:

εh tð Þ = ln
~h/ph tð Þ + 1
1 − ~h/ph tð Þ

 !
, ð41Þ

where phðtÞ = coth ðkpht + χphÞ − 1 + ph∞, and kph, χph, ph∞
∈ R+ are parameters to be designed.

Furthermore, the first derivative of εhðtÞ with respect to
time yields the following:

_εh tð Þ = rh
_~h −

_ph tð Þ
ph tð Þ

~h
� �

= rh V sin γ − _href −
_ph tð Þ
ph tð Þ

~h
� �

,

ð42Þ

where

rh =
1

ph tð Þ
1

~h/ph tð Þ + 1
−

1
~h/ph tð Þ − 1

 !
> 0,

_ph tð Þ = kph 1 − coth2 kpht + χph

� �� �
:

ð43Þ

The flight-path angle command is defined as follows:

γd = arcsin
−kh1εh − kh2

Ð t
0εhdτ + _href + _ph tð Þ~h/ph tð Þ

V

 !
,

ð44Þ

where kh1, kh2 > 0 are parameters to be designed.
If γ→ γd, γ in Equation (41) is replaced with γd and a

Laplace transform is applied, yielding:

s2 + kh1s + kh2 = 0: ð45Þ

The two characteristics roots of Equation (43), ð−kh1
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh1

2 − 4kh2
p

Þ/2 and ð−kh1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh1

2 − 4kh2
p

Þ/2, are nega-
tive real numbers. Therefore, the altitude transformed error
εhðtÞ is convergent and bounded. For the altitude subsystem
(Equation (19)), the control goal can be achieved through the
control law δe design which makes γ→ γd [43].

For the rest of the altitude subsystem (Equation (19)), the
active disturbance rejection control law of δe is designed in
three steps.

Step 1. For _γ = f γðγ, θÞ, the pitch angle command θd is
designed.

Combined with the concept of active disturbance rejec-
tion, _γ = f γðγ, θÞ can be expressed as follows:

_γ = f γ γ, θð Þ + dγ tð Þ − lγθ + lγθ = Fγ γ, θð Þ + lγθ, ð46Þ

where dγðtÞ is the external disturbance, Fγðγ, θÞ = f γðγ, θÞ +
dγðtÞ − lγθ, and lγ > 0 is a parameter to be designed.

The flight-path angle tracking error is defined as follows:

~γ = γ − γd: ð47Þ
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The first derivative of Equation (45) is obtained, and
Equation (44) is substituted into the result, yielding:

_~γ = _γ − _γd = Fγ γ, θð Þ + lγθ − _γd: ð48Þ

The mathematical expression of _γd is complicated. Thus,
to avoid the differential expansion problem and effectively fil-
ter out the effects of input noise in the differential signals, the
new TD proposed in this paper is applied to estimate _γd.

_υγ1 = υγ2,

_υγ2 = R2
γ γd − υγ1 −

υγ2
Rγ

 !
,

8>><
>>: ð49Þ

where Rγ > 0 is the parameter to be designed, and υγ1 and υγ2
are the estimated values of γd and _γd, respectively.

To estimate the unknown term Fγðγ, θÞ, the following
ESO is designed for Equation (46):

Eγ = Zγ1 − ~γ,

_Zγ1 = Zγ2 − βγ1eγ − υγ2 + lγθ,

_Zγ2 = −βγ2 Eγ

�� ��αγ sgn Eγ

� �
,

8>>><
>>>:

ð50Þ

where βγ1, βγ2 > 0, 0 ≤ αγ ≤ 1 is the parameter to be designed,
and Zγ1 and Zγ2 are the estimated values of ~γ and Fγðγ, θÞ,
respectively.

The pitch angle command θd can be designed as follows:

θd = −
1
lγ

Zγ2 + kγ~γ − υγ2
� �

, ð51Þ

where kγ > 0 is the parameter to be designed.

Step 2. For _θ =Q, the pitch rate command Qd is designed.

The pitch angle tracking error is defined as follows:

~θ = θ − θd: ð52Þ

If the AHV is affected by an external disturbance, _θ =Q
can be expressed as follows:

_θ =Q + dθ tð Þ, ð53Þ

where dθðtÞ is the unknown external disturbance.
The first derivative of ~θ with respect to time is obtained,

and Equation (51) is substituted into the result, yielding:

_~θ = _θ − _θd =Q + dθ tð Þ − _θd: ð54Þ

To avoid the differential expansion problem and effec-
tively filter out the effects of input noise in the differential

signals, the new TD proposed in this paper is applied to
estimate _θd:

_υθ1 = υθ2

_υθ2 = R2
θ θd − υθ1 −

υθ2
Rθ

� �
,

8><
>: ð55Þ

where Rθ > 0 is the parameter to be designed, and υθ1 and
υθ2 are the estimated values of θd and _θd, respectively.

To estimate the unknown term dθðtÞ, the following ESO
is designed for Equation (52):

Eθ = Zθ1 − ~θ,
_Zθ1 = Zθ2 − βθ1Eθ − υθ2 +Q,
_Zθ2 = −βθ2 Eθj jαθ sgn Eθð Þ,

8>><
>>: ð56Þ

where βθ1, βθ2 > 0, 0 ≤ αθ ≤ 1 is the parameter to be designed,

Zθ1 is the estimated value of ~θ, and Zθ2 is the estimated value
of the unknown term dθðtÞ.

The pitch rate command Qd can be designed as follows:

Qd = − Zθ2 + kθ~θ + lγ~γ − υθ2
� �

, ð57Þ

where kθ > 0 is the parameter to be designed.

Step 3. For _Q = f Qðx, δeÞ, the control law δe is designed.

The pitch rate tracking error is defined as follows:

~Q =Q −Qd: ð58Þ

If the AHV is affected by an external disturbance, com-
bined with the concept of active disturbance rejection, the
equation _Q = f Qðx, δeÞ can be expressed as follows:

_Q = f Q x, δeð Þ + dQ tð Þ − lQδe + lQδe = FQ x, δeð Þ + lQδe, ð59Þ

where dQðtÞ is the external disturbance, FQðx, δeÞ = f Qðx,
δeÞ + dQðtÞ − lQδe is the unknown term, and lQ > 0 is the
parameter to be designed.

The first derivative of ~Q with respect to time is obtained,
and Equation (57) is substituted into the result, yielding:

_~Q = _Q − _Qd = FQ x, δeð Þ + lQδe − _Qd: ð60Þ

The following new TD is applied to estimate _Qd:

_υQ1 = υQ2,

_υQ2 = R2
Q Qd − υQ1 −

υQ2
RQ

� �
,

8><
>: ð61Þ

where RQ > 0 is the parameter to be designed, and υQ1 and

υQ2 are the estimated values of Qd and _Qd, respectively.
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To estimate the unknown term FQðx, δeÞ, the following
ESO is designed for Equation (58):

EQ = ZQ1 − ~Q,

_ZQ1 = ZQ2 − βQ1EQ − υQ2 + lQδe,

_ZQ2 = −βQ2 EQ

�� ��αQ sgn EQ

� �
,

8>>><
>>>:

ð62Þ

where βQ1, βQ2 > 0, 0 ≤ αQ ≤ 1 is the parameter to be

designed, ZQ1 is the estimated value of ~Q, and ZQ2 is the esti-
mated value of the unknown term FQðx, δeÞ.

The control law δe can be designed as follows:

δe = −
1
lQ

ZQ2 + kQ ~Q − υQ2 + ~θ
� �

, ð63Þ

where lQ > 0 is the parameter to be designed.

Theorem 5. Considering the altitude subsystem (Equation
(19)), if the active disturbance rejection control law δe (Equa-
tion (61)), the ESO (Equation (60)), and the new TD are
applied, the closed-loop control system is semiglobally uniformly
asymptotically stable. The tracking errors εh, ~γ, ~θ, and ~Q are
bounded, and the altitude tracking error ~h is limited to the pre-
scribed area. The following inequality holds −phðtÞ < ~h < phðtÞ.

Proof. The following Lyapunov function is selected:

Wh =
1
2
~γ2 +

1
2
~θ
2 +

1
2
~Q
2
: ð64Þ

The first derivative of Wh with respect to time is
obtained, and Equations (46), (49), (50), (52), (55), (56),
(58), and (61) are substituted into the result, yielding:

_Wh = ~γ _~γ + ~θ _~θ + ~Q _~Q = ~γ Fγ γ, θð Þ + lγ ~θ + θd
� �

− _γd

� �
+ ~θ ~Q +Qd + dθ tð Þ − _θd
� �

+ ~Q FQ x, δeð Þ + lQδe− _Qd

� �
= −kγ~γ

2 + ~γ Fγ γ, θð Þ − Zγ2
� �

+ ~γ υγ2 − _γd
� �

+ lγ~θ~γ

− kθ~θ
2
− lγ~θ~γ + ~θ dθ tð Þ − Zθ2ð Þ + ~θ υθ2 − _θd

� �
+ ~θ~Q − kQ ~Q

2 − ~θ~Q + ~Q FQ x, δeð Þ − ZQ2
� �

+ ~Q υQ2 − _Qd

� �
:

ð65Þ

According to Equations (24) and (26), bounded con-
stants σγ, σθ, σQ, �λγ, �λθ, and �λQ exist, which make:

Fγ γ, θð Þ − Zγ2
�� �� ≤ σγ, υγ2 − _γd

�� �� ≤ �λγ,

dθ tð Þ − Zθ2j j ≤ σθ, υθ2 − _θd

��� ��� ≤ �λθ,

FQ x, δeð Þ − ZQ2
�� �� ≤ σQ, υQ2 − _Qd

�� �� ≤ �λQ,

8>>>><
>>>>:

ð66Þ

where

~γσγ ≤
~γ2

2
+
σ2
γ

2
, ~γ�λγ ≤

~γ2

2
+
�λ
2
γ

2
,

~θσθ ≤
~θ
2

2
+
σ2
θ

2
, ~θ�λθ ≤

~θ
2

2
+
�λ
2
θ

2
,

~QσQ ≤
~Q
2

2
+
σ2Q
2
, ~Q�λQ ≤

~Q
2

2
+
�λ
2
Q

2
:

8>>>>>>>>><
>>>>>>>>>:

ð67Þ

Combining Equations (63), (64), and (65) yields the fol-
lowing:

_Wh ≤ − kγ − 1
� �

~γ2 − kθ − 1ð Þ~θ2 − kQ − 1
� �

~Q
2

+
1
2

σ2γ + �λ
2
γ + σ2θ + �λ

2
θ + σ2Q + �λ

2
Q

� �
:

ð68Þ

With kγ > 1, kθ > 1, and kQ > 1, the following compact
sets are defined:

Ω~γ = ~γ ~γj j ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
γ + �λ

2
γ + σ2θ + �λ

2
θ + σ2

Q + �λ
2
Q

2 kγ − 1
� �

vuut
�������

8><
>:

9>=
>;,

Ω~θ = ~θ ~θ
��� ��� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2γ + �λ

2
γ + σ2

θ + �λ
2
θ + σ2Q + �λ

2
Q

2 kθ − 1ð Þ

vuut
�������

8><
>:

9>=
>;,

Ω~Q = ~Q ~Q
�� �� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2γ + �λ

2
γ + σ2θ + �λ

2
θ + σ2Q + �λ

2
Q

2 kQ − 1
� �

vuut
�������

8><
>:

9>=
>;:

ð69Þ

According to Equation (67), if ~γ ∉Ω~γ, ~θ ∉Ω~θ, or ~Q ∉Ω~Q,
_Wh < 0.Wh decreases until ~γ, ~θ, and ~Q converge to the com-
pact sets Ω~γ,Ω~θ, and Ω~Q, respectively. Therefore, the closed-
loop control system is semiglobally uniformly asymptotically
stable. ~γ, ~θ, and ~Q are ultimately bounded. However, if the
estimated error of the ESO and new TD are sufficiently small

(σ2γ + �λ
2
γ + σ2

θ + �λ
2
θ + σ2Q + �λ

2
Q is sufficiently small), the radii of

the compact sets Ω~γ, Ω~θ, and Ω~Q can be sufficiently small,

and ~γ, ~θ, and ~Q can be sufficiently small. If the ~γ is sufficiently
small, then γ→ γd. According to Equations (40)–(43), the
altitude transformed error is bounded. Thus, by Theorem 1,
−phðtÞ < ~h < phðtÞ, which means the altitude transformed
error is limited to the prescribed area.

4. Simulation Results

Taking the longitudinal motion model of the AHV (Equa-
tions (1)–(10)) as the controlled object, the tracking simu-
lations of speed and altitude reference input were carried
out. The simulations were solved using the fourth-order
Runge-Kutta method, and the simulation step was taken to
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be 0.01 s. The initial values of the AHV state variables are
shown in Table 1.

The velocity reference command V ref and the altitude
reference command href are specified by the following
second-order system:

V ref sð Þ
VI sð Þ

=
href sð Þ
hI sð Þ

=
ω2
n

s2 + 2ζnωns + ω2
n
, ð70Þ

where the damping ratio ζn = 0:9, the natural frequency
ωn = 0:1rad/s, and VI and hI are the input signals of the
second-order system.

When the control algorithm proposed in this paper was
used for the simulation, the prescribed performance parame-
ters were selected as follows: kpV = 0:1, χpV = 0:35, pV∞ =
0:08, kph = 0:1, χph = 1, and ph∞ = 0:01. The ADRC controller
parameters were selected as follows: lV = 10, kV = 10, kh1 =
3:5, kh2 = 0:1, lγ = 2, kγ = 50, kθ = 50, lQ = 10, and kQ = 20.
The designed parameters of the new TD were selected as fol-
lows: Rγ = 5, Rθ = 2, and RQ = 2. The designed parameters of
the ESO were selected as follows: βV1 = 2, βV2 = 2, αV = 0:4,
βγ1 = 2, βγ2 = 2, αγ = 0:4, βθ1 = 25, βθ2 = 25, αθ = 0:4, βQ1 =
25, βQ2 = 25, and αQ = 0:4. Simulations were carried out in
the following two scenarios.

Scenario 1. The prescribed performance-based active distur-
bance rejection control (PP-ADRC) method proposed in this
paper with the robust back-stepping control method (RBC)
from a previous study [44] was compared. The simulation
time was set to 100 s. VI and hI were selected as a step signal
with an amplitude of 200m/s. To verify the robustness of the
proposed method, it was assumed that a 40% perturbation of
the aerodynamic parameters existed in the AHV model,
which is expressed as C = C0½1 + 0:4 sin ð0:1πtÞ�. C0 repre-
sents the nominal value of the aerodynamic parameter and
C represents the value of the aerodynamic parameter in the
simulation. In addition, an external disturbance was added
after 50 s of simulation:

dV = dγ = dθ = dQ = 2 sin 0:1πtð Þ: ð71Þ

The simulation results for Scenario 1 are shown in
Figure 3. Figures 3(a)–3(d) show that the velocity and alti-
tude tracking errors were limited to the prescribed area
when using the PP-ADRC. Compared with the RBC, the
PP-ADRC can guarantee better dynamic performances of
the velocity and altitude tracking errors. When there was
parameter perturbation and external disturbance, the PP-
ADRC exhibited a higher control accuracy and stronger
robustness. Figure 3(e) shows that the flight-path angle
response of the PP-ADRC was smoother than that of the
RBC. Moreover, the PP-ADRC proposed in this paper could
estimate the unknown term of the model through the ESO
(Figures 3(g) and 3(h)). The virtual reference command
and the differential signals could be effectively estimated
through the new TD (Figure 3(f)). Thus, the control accuracy
of the method is further guaranteed.

Scenario 2. The PP-ADRC was compared with the neural
back-stepping control method (NBC) from a previous study
[45]. The simulation time was set to 300 s. To better reflect
the actual manoeuvre of the AHV, VI was assumed to be a
“step” type signal with a step of 150m/s per 100 s. hI was
assumed to be a square wave signal with a amplitude of
200m and a period of 200 s. Also, it was assumed that the
40% perturbation of the aerodynamic parameters existed in
the AHV model. The following definitions were made:

C =

C0, 0 s ≤ t < 50 s,

C0 1 + 0:4 sin 0:1πtð Þ½ �, 50 s ≤ t < 100 s,

C0, 100 s ≤ t < 150 s,

C0 1 + 0:4 sin 0:1πtð Þ½ �, 150 s ≤ t < 200 s,

C0, 200 s ≤ t < 250 s,

C0 1 + 0:4 sin 0:1πtð Þ½ �, 250 s ≤ t ≤ 300 s,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð72Þ

where C0 represents the nominal value of the aerodynamic
parameter, and C represents the value of the aerodynamic
parameter in the simulation. In addition, external distur-
bances were added after 150 s of simulation: dV = dγ = dθ =
dQ = 2 sin ð0:1πtÞ.

The simulation results of the Scenario 2 are shown in
Figure 4. Figures 4(a)–4(d) show that the dynamic perfor-
mances and control accuracy of the velocity and altitude
tracking errors of the PP-ADRC were better than those of
the NBC. Figure 4(e) shows that the flight-path angle
response of the PP-ADRC was smoother than that of the
NBC. Meanwhile, the PP-ADRC proposed in this paper
could estimate the unknown term of the model through the
ESO (Figures 4(g) and 4(h)). The virtual reference command
and the differential signals could be effectively estimated
through the new TD (Figure 4(f)). Thus, the control accuracy
of the method was further guaranteed. Figures 4(i)–4(l) show
that both of the control methods could achieve the effective
suppression of the elastic vibrations.

5. Conclusions

(1) An active disturbance rejection control for an AHV
based on the prescribed performance function is

Table 1: Initial values of the AHV state variables.

Parameter Value Unit

V 2500 m/s

h 27000 m

γ 0 °

θ 1.5 °

Q 0 °/s

η1 0.29 —

η2 0.26 —
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Figure 3: Continued.
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Figure 3: Simulation results for Scenario 1.
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proposed in this paper. The proposed method guar-
antees the stability of the AHV closed-loop control
system. The desired dynamic and steady-state perfor-
mances of the convergence process of the tracking
error were ensured

(2) In the controller design process, the adopted active
disturbance rejection method and extended state
observer further enhanced the capacity to resist the
disturbances, which guaranteed the robustness of
the method

(3) The simulation results in the paper proved the effec-
tiveness of the proposed method. The comparison
with the related publications showed that the
dynamic and steady-state performances of the pro-
posed method were superior

Appendix

A.Proof of Theorem 2

Based on Equations (20)–(22), we set E∗ = Z2 −HðtÞ = Z2 −
z0. The first derivatives of E and E∗ with respect to time
can be expressed as follows:

E = Z1 − z, E∗ = Z2 − z0,
_E = _Z1 − _z = Z2 − z0 − β01E = E∗ − β01E,

_E
∗ = _Z2 − _z0 = −G tð Þ − β02 Ej jα1 sgn Eð Þ:

8>><
>>: ðA:1Þ

The following Lyapunov function was selected:

V =
β02

α1 + 1
⋅ Ej jα1+1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
2β02
α1 + 1

s

⋅ Ej j α1+1ð Þ/2 sgn Eð Þ ⋅ E∗ + 1
2
E∗2 ,

ðA:2Þ

because

V =
β02

α1 + 1
⋅ Ej jα1+1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
2β02
α1 + 1

s
⋅ Ej j α1+1ð Þ/2 sgn Eð Þ ⋅ E∗ +

1
2
E∗2

=

ffiffiffiffiffiffiffiffiffiffiffiffi
β02

α1 + 1

s
⋅ Ej j α1+1ð Þ/2 sgn Eð Þ −

ffiffiffi
1
2

r
E∗

 !2

≥ 0:

ðA:3Þ

V is positive semidefinite. Below, _V is studied. The partial
derivative of V with respect to E and E∗ can be expressed as
follows:

∂V
∂E

= β02 Ej jα1 sgn Eð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β02 α1 + 1ð Þ

2

r
Ej j α1−1ð Þ/2E∗,

∂V
∂E∗ = −

ffiffiffiffiffiffiffiffiffiffiffiffi
2β02
α1 + 1

s
⋅ Ej j α1+1ð Þ/2 sgn Eð Þ + E∗:

ðA:4Þ

The first derivative ofV with respect to time was obtained,
and with Equations (70)–(A.1), this yields the following:

_V =
∂V
∂E

_E +
∂V
∂E∗

_E
∗ =
 
β02 Ej jα1 sgn Eð Þ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β02 α1 + 1ð Þ

2

r
Ej j α1−1ð Þ/2E∗

!
E∗ − β01Eð Þ

+ −

ffiffiffiffiffiffiffiffiffiffiffiffi
2β02
α1 + 1

s
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 !
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2
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Values of β01, β02, and α1 are selected, yielding:

β01β02 − β02

ffiffiffiffiffiffiffiffiffiffiffiffi
2β02
α1 + 1

s
Ej j α1−1ð Þ/2

−
β01
2
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β02 α1 + 1ð Þ

2
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2
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> 0,
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−
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2
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The following compact set is defined as follows:

According to Equation (A.4), if E ∉ΩE or E
∗ ∉ΩE∗ , then

_V < 0.V will decrease until E and E∗ converge to the compact
sets ΩE and ΩE∗ , respectively. Thus, the error system (Equa-
tion (70)) is semiglobally uniformly asymptotically stable. E
and E∗ are uniformly asymptotically bounded. However, if
the radii of the compact sets ΩE and ΩE∗ can be made suffi-
ciently small by selecting appropriate values of β01, β02, and
α1, the errors E and E∗ will be sufficiently small, and there
must be bounded constants σ1, σ2 > 0 such that:

Z1 − zj j ≤ σ1,

Z2 −H tð Þj j ≤ σ2:

(
ðA:8Þ
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